

Safety Data Sheet

Copyright, 2020, 3M Company.

All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

 Document Group:
 09-5003-0
 Version Number:
 3.00

 Issue Date:
 09/09/2020
 Supercedes Date:
 25/02/2018

This Safety Data Sheet has been prepared in accordance with the Malaysia Occupational Safety and Health (Chemical Classification, Labelling and Safety Data Sheets) Regulations 2013.

SECTION 1: Identification

1.1. Product identifier

3M™ Windo-Weld™ Super Fast Urethane, PN 08609

Product Identification Numbers

60-9800-3692-9

1.2. Recommended use and restrictions on use

Recommended use

Adhesive, Adhesive/Sealant for Windshields

1.3. Supplier's details

ADDRESS: 3M Malaysia Sdn. Bhd., Level 8, Block F, Oasis Square, No.2, Jalan PJU 1A/7A, Ara Damansara 47301

Petaling, Jaya, Selangor

Telephone: 03-7884 2888

E Mail: 3mmyehsr@mmm.com Website: www.3M.com.my

1.4. Emergency telephone number

+60 03-7884 2888

SECTION 2: Hazard identification

2.1. Classification of the substance or mixture

Serious Eye Damage/Irritation: Category 2. Skin Corrosion/Irritation: Category 2. Reproductive Toxicity: Category 1B.

Carcinogenicity: Category 2.

Specific Target Organ Toxicity (repeated exposure): Category 1. Specific Target Organ Toxicity (repeated exposure): Category 2.

Chronic Aquatic Toxicity: Category 3.

2.2. Label elements

Signal word

Danger

Symbols

Exclamation mark | Health Hazard |

Pictograms

Hazard Statements

H319 Causes serious eye irritation.

H315 Causes skin irritation.

H360 May damage fertility or the unborn child.

H351 Suspected of causing cancer.

H372 Causes damage to organs through prolonged or repeated exposure:

respiratory system

H373 May cause damage to organs through prolonged or repeated exposure:

nervous system | sensory organs |

H412 Harmful to aquatic life with long lasting effects.

Precautionary statements

General:

P102 Keep out of reach of children.

P101 If medical advice is needed, have product container or label at hand.

Prevention:

P201 Obtain special instructions before use.

P260 Do not breathe dust/fume/gas/mist/vapors/spray.
P280B Wear protective gloves and eye/face protection.
P281 Use personal protective equipment as required.

Response:

P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing.

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.
P332 + P313 If skin irritation occurs: Get medical advice/attention.
P308 + P313 IF exposed or concerned: Get medical advice/attention.

Storage:

P405 Store locked up.

Disposal:

P501 Dispose of contents/container in accordance with applicable

local/regional/national/international regulations.

2.3. Other hazards

Persons previously sensitized to isocyanates may develop a cross-sensitization reaction to other isocyanates.

SECTION 3: Composition/information on ingredients

This material is a mixture.

Ingredient	C.A.S. No.	% by Wt
Urethane Polymer	68130-40-5	30 - 60
Carbon Black	1333-86-4	10 - 30
Sulfonic Acids, C10-18-Alkane, Ph Esters	70775-94-9	10 - 30
Kaolin, Calcined	92704-41-1	10 - 20
Hydrotreated Light Petroleum Distillates	64742-47-8	1 - 5
Toluene	108-88-3	1 - 5
P,P'-Methylenebis(phenyl isocyanate)	101-68-8	0.1 - 1
DIBUTYLTIN DICHLORIDE	683-18-1	< 0.1

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Remove person to fresh air. If you feel unwell, get medical attention.

Skin Contact:

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye Contact:

Immediately flush with large amounts of water. Remove contact lenses if easy to do. Continue rinsing. Get medical attention.

If Swallowed:

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

See Section 11.1. Information on toxicological effects.

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

DO NOT USE WATER

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

SubstanceConditionCarbon monoxideDuring CombustionCarbon dioxideDuring Combustion

5.3. Special protective actions for fire-fighters

No special protective actions for fire-fighters are anticipated.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice. Refer to other sections of this SDS for information regarding physical and health hazards, respiratory protection, ventilation, and personal protective equipment.

6.2. Environmental precautions

Avoid release to the environment.

6.3. Methods and material for containment and cleaning up

Pour isocyanate decontaminant solution (90% water, 8% concentrated ammonia, 2% detergent) on spill and allow to react for 10 minutes. Or pour water on spill and allow to react for more than 30 minutes. Cover with absorbent material. Vacuum or sweep up. WARNING! A motor could be an ignition source and cause flammable gases or vapors or dust in the spill area to burn or explode. Place in a container approved for transportation by appropriate authorities, but do not seal the container for 48 hours to avoid pressure build-up. Clean up residue. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

For industrial/occupational use only. Not for consumer sale or use. Do not use in a confined area with minimal air exchange. Do not handle until all safety precautions have been read and understood. Do not breathe dust/fume/gas/mist/vapors/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Avoid contact with oxidizing agents (eg. chlorine, chromic acid etc.) Keep away from reactive metals (eg. Aluminum, zinc etc.) to avoid the formation of hydrogen gas that could create an explosion hazard. Use personal protective equipment (gloves, respirators, etc.) as required.

7.2. Conditions for safe storage including any incompatibilities

Keep container tightly closed to prevent contamination with water or air. If contamination is suspected, do not reseal container. Store away from heat. Store away from acids. Store away from strong bases. Store away from oxidizing agents. Store away from amines.

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	C.A.S. No.	Agency	Limit type	Additional Comments
P,P'-Methylenebis(phenyl	101-68-8	ACGIH	TWA:0.005 ppm	
isocyanate)				
P,P'-Methylenebis(phenyl	101-68-8	Malaysia OELs	TWA(8 hours):0.051	
isocyanate)			mg/m3(0.005 ppm)	
Toluene	108-88-3	ACGIH	TWA:20 ppm	A4: Not class. as human
				carcin
Toluene	108-88-3	Malaysia OELs	TWA(8 hours):188 mg/m3(50	SKIN
			ppm)	
Carbon Black	1333-86-4	ACGIH	TWA(inhalable fraction):3	A3: Confirmed animal
			mg/m3	carcin.
Carbon Black	1333-86-4	Malaysia OELs	TWA(8 hours):3.5 mg/m3	
Kerosine (petroleum)	64742-47-8	ACGIH	TWA(as total hydrocarbon	A3: Confirmed animal
			vapor, non-aerosol):200	carcin., SKIN
			mg/m3	

TIN, ORGANIC COMPOUNDS	683-18-1	ACGIH	TWA(as Sn):0.1	A4: Not class. as human
			mg/m3;STEL(as Sn):0.2	carcin, Danger of
			mg/m3	cutaneous absorption
TIN, ORGANIC COMPOUNDS	683-18-1	Malaysia OELs	TWA(as Sn)(8 hours):0.1	SKIN
			mg/m3	

ACGIH: American Conference of Governmental Industrial Hygienists

CMRG: Chemical Manufacturer's Recommended Guidelines

Malaysia OELs: Malaysia. Occupational Safety and Health (Use and Standards of Exposure of Chemicals Hazardous to Health) Regulations

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

Provide ventilated enclosure for curing. Curing enclosures must be exhausted to outdoors or to a suitable emission control device. Use general dilution ventilation and/or local exhaust ventilation to control airborne exposures to below relevant Exposure Limits and/or control dust/fume/gas/mist/vapors/spray. If ventilation is not adequate, use respiratory protection equipment.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

Select and use eye/face protection to prevent contact based on the results of an exposure assessment. The following eye/face protection(s) are recommended:

Indirect Vented Goggles

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing.

Gloves made from the following material(s) are recommended: Nitrile Rubber

If this product is used in a manner that presents a higher potential for exposure (eg. spraying, high splash potential etc.), then use of protective coveralls may be necessary. Select and use body protection to prevent contact based on the results of an exposure assessment. The following protective clothing material(s) are recommended: Apron – Nitrile

Respiratory protection

An exposure assessment may be needed to decide if a respirator is required. If a respirator is needed, use respirators as part of a full respiratory protection program. Based on the results of the exposure assessment, select from the following respirator type(s) to reduce inhalation exposure:

Half facepiece or full facepiece air-purifying respirator suitable for organic vapors and particulates

For questions about suitability for a specific application, consult with your respirator manufacturer.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Solid
Specific Physical Form:	Paste
Color	Black

Odor	Neutral	
Odor threshold	No Data Available	
pH	Not Applicable	
Melting point/Freezing point	No Data Available	
Boiling point/Initial boiling point/Boiling range	110 ℃	
Flash Point	No flash point	
Evaporation rate	No Data Available	
Flammability (solid, gas)	Not Classified	
Flammable Limits(LEL)	1.2 % volume	
Flammable Limits(UEL)	7.1 % volume	
Vapor Pressure	2,900 Pa [<i>Ref Std</i> :AIR=1]	
Vapor Density and/or Relative Vapor Density	3.14 [<i>Ref Std</i> :AIR=1]	
Density	1.205 g/cm3	
Relative Density	1.2 [Ref Std:WATER=1]	
Water solubility	Negligible	
Solubility- non-water	No Data Available	
Partition coefficient: n-octanol/ water	No Data Available	
Autoignition temperature	450 ℃	
Decomposition temperature	No Data Available	
Viscosity/Kinematic Viscosity	No Data Available	
Volatile Organic Compounds	70 g/l [Test Method:calculated SCAQMD rule 443.1]	
Percent volatile	5.8 % weight	
VOC Less H2O & Exempt Solvents	70 g/l [Test Method:calculated SCAQMD rule 443.1]	
Molecular weight	No Data Available	

Nanoparticles

This material contains nanoparticles.

SECTION 10: Stability and reactivity

10.1. Reactivity

This material may be reactive with certain agents under certain conditions - see the remaining headings in this section.

10.2. Chemical stability

Stable.

10.3. Possibility of hazardous reactions

Hazardous polymerization will not occur.

10.4. Conditions to avoid

Heat

High shear and high temperature conditions

Sparks and/or flames

Temperatures above the boiling point

10.5. Incompatible materials

Amines

Alcohols

Water

Reaction with water, alcohols, and amines is not hazardous if container can vent to the atmosphere to prevent pressure buildup.

Accelerators

Al or Mg powder and high/shear temperature conditions

Alkali and alkaline earth metals

Reactive metals

Reducing agents

Strong acids

Strong bases

Strong oxidizing agents

Combustibles

Finely divided active metals

Reaction with water, alcohols, and amines is not hazardous if container can vent to the atmosphere to prevent pressure buildup.

10.6. Hazardous decomposition products

Substance

Condition

None known.

Refer to section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labeling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1. Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation:

May be harmful if inhaled.

Respiratory Tract Irritation: Signs/symptoms may include cough, sneezing, nasal discharge, headache, hoarseness, and nose and throat pain.

Allergic Respiratory Reaction: Signs/symptoms may include difficulty breathing, wheezing, cough, and tightness of chest.

May cause additional health effects (see below).

Skin Contact:

Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, dryness, cracking, blistering, and pain. Allergic Skin Reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching.

Eve Contact:

Severe Eye Irritation: Signs/symptoms may include significant redness, swelling, pain, tearing, cloudy appearance of the cornea, and impaired vision.

Ingestion:

May be harmful if swallowed.

Gastrointestinal Irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhea.

May cause additional health effects (see below).

Additional Health Effects:

Prolonged or repeated exposure may cause target organ effects:

Ocular Effects: Signs/symptoms may include blurred or significantly impaired vision.

Auditory Effects: Signs/symptoms may include hearing impairment, balance dysfunction and ringing in the ears.

Olfactory Effects: Signs/symptoms may include decreased ability to detect odors and/or complete loss of smell.

Neurological Effects: Signs/symptoms may include personality changes, lack of coordination, sensory loss, tingling or numbness of the extremities, weakness, tremors, and/or changes in blood pressure and heart rate.

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Carcinogenicity:

Contains a chemical or chemicals which can cause cancer.

Additional Information:

Persons previously sensitized to isocyanates may develop a cross-sensitization reaction to other isocyanates.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Dermal		No data available; calculated ATE >5,000 mg/kg
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE20 - 50 mg/l
Overall product	Ingestion		No data available; calculated ATE2,000 - 5,000 mg/kg
Urethane Polymer	Dermal		LD50 estimated to be > 5,000 mg/kg
Urethane Polymer	Ingestion		LD50 estimated to be 2,000 - 5,000 mg/kg
Sulfonic Acids, C10-18-Alkane, Ph Esters	Dermal	Rat	LD50 > 1,000 mg/kg
Sulfonic Acids, C10-18-Alkane, Ph Esters	Ingestion	Rat	LD50 > 5,000 mg/kg
Carbon Black	Dermal	Rabbit	LD50 > 3,000 mg/kg
Carbon Black	Ingestion	Rat	LD50 > 8,000 mg/kg
Kaolin, Calcined	Dermal		LD50 estimated to be 2,000 - 5,000 mg/kg
Kaolin, Calcined	Ingestion	Rat	LD50 > 2,000 mg/kg
Toluene	Dermal	Rat	LD50 12,000 mg/kg
Toluene	Inhalation- Vapor (4 hours)	Rat	LC50 30 mg/l
Toluene	Ingestion	Rat	LD50 5,550 mg/kg
Hydrotreated Light Petroleum Distillates	Dermal	Rabbit	LD50 > 3,160 mg/kg
Hydrotreated Light Petroleum Distillates	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 3 mg/l
Hydrotreated Light Petroleum Distillates	Ingestion	Rat	LD50 > 5,000 mg/kg
P,P'-Methylenebis(phenyl isocyanate)	Dermal	Rabbit	LD50 > 5,000 mg/kg
P,P'-Methylenebis(phenyl isocyanate)	Inhalation- Dust/Mist (4 hours)	Rat	LC50 0.368 mg/l
P,P'-Methylenebis(phenyl isocyanate)	Ingestion	Rat	LD50 31,600 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Carbon Black	Rabbit	No significant irritation
Toluene	Rabbit	Irritant

3M™ Windo-Weld™ Super Fast Urethane, PN 08609

Hydrotreated Light Petroleum Distillates	Rabbit	Mild irritant
P,P'-Methylenebis(phenyl isocyanate)	official	Irritant
	classificat	
	ion	

Serious Eye Damage/Irritation

Name	Species	Value
Carbon Black	Rabbit	No significant irritation
Toluene	Rabbit	Moderate irritant
Hydrotreated Light Petroleum Distillates	Rabbit	Mild irritant
P,P'-Methylenebis(phenyl isocyanate)	official	Severe irritant
	classificat	
	ion	

Sensitization:

Skin Sensitization

Name	Species	Value
Toluene	Guinea	Not classified
	pig	
Hydrotreated Light Petroleum Distillates	Guinea	Not classified
	pig	
P,P'-Methylenebis(phenyl isocyanate)	official	Sensitizing
	classificat	
	ion	

Respiratory Sensitization

Name	Species	Value
P,P'-Methylenebis(phenyl isocyanate)	Human	Sensitizing

Germ Cell Mutagenicity

Name	Route	Value
Carbon Black	In Vitro	Not mutagenic
Carbon Black	In vivo	Some positive data exist, but the data are not
		sufficient for classification
Toluene	In Vitro	Not mutagenic
Toluene	In vivo	Not mutagenic
Hydrotreated Light Petroleum Distillates	In Vitro	Not mutagenic
P,P'-Methylenebis(phenyl isocyanate)	In Vitro	Some positive data exist, but the data are not
		sufficient for classification

Carcinogenicity

Name	Route	Species	Value
Carbon Black	Dermal	Mouse	Not carcinogenic
Carbon Black	Ingestion	Mouse	Not carcinogenic
Carbon Black	Inhalation	Rat	Carcinogenic
Toluene	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
Toluene	Ingestion	Rat	Some positive data exist, but the data are not sufficient for classification
Toluene	Inhalation	Mouse	Some positive data exist, but the data are not sufficient for classification
Hydrotreated Light Petroleum Distillates	Dermal	Mouse	Some positive data exist, but the data are not sufficient for classification
P,P'-Methylenebis(phenyl isocyanate)	Inhalation	Rat	Some positive data exist, but the data are not sufficient for classification

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test Result	Exposure Duration
Toluene	Inhalation	Not classified for female reproduction	Human	NOAEL Not available	occupational exposure
Toluene	Inhalation	Not classified for male reproduction	Rat	NOAEL 2.3 mg/l	1 generation
Toluene	Ingestion	Toxic to development	Rat	LOAEL 520 mg/kg/day	during gestation
Toluene	Inhalation	Toxic to development	Human	NOAEL Not available	poisoning and/or abuse
P,P'-Methylenebis(phenyl isocyanate)	Inhalation	Not classified for development	Rat	NOAEL 0.004 mg/l	during organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Toluene	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	
Toluene	oluene Inhalation respiratory irritation Some positive data exist, but the data are not sufficient for classification		Human	NOAEL Not available		
Toluene	Inhalation	immune system	Not classified	Mouse	NOAEL 0.004 mg/l	3 hours
Toluene	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Human	NOAEL Not available	poisoning and/or abuse
Hydrotreated Light Petroleum Distillates	Inhalation	central nervous system depression	May cause drowsiness or dizziness	Human and animal	NOAEL Not available	
Hydrotreated Light Petroleum Distillates	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL Not available	
Hydrotreated Light Petroleum Distillates	Ingestion	central nervous system depression	May cause drowsiness or dizziness	Professio nal judgeme nt	NOAEL Notavailable	
P,P'-Methylenebis(phenyl isocyanate)	Inhalation	respiratory irritation	May cause respiratory irritation	official classifica tion	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test Result	Exposure Duration
Carbon Black	Inhalation	pneumoconiosis	Not classified	Human	NOAEL Not available	occupational exposure
Toluene	Inhalation	auditory system eyes olfactory system	Causes damage to organs through prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
Toluene	Inhalation	nervous system	May cause damage to organs though prolonged or repeated exposure	Human	NOAEL Not available	poisoning and/or abuse
Toluene	Inhalation	respiratory system	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 2.3 mg/l	15 months
Toluene	Inhalation	heart liver kidney and/or bladder	Not classified	Rat	NOAEL 11.3 mg/l	15 weeks
Toluene	Inhalation	endocrine system	Not classified	Rat	NOAEL 1.1 mg/l	4 weeks
Toluene	Inhalation	immune system	Not classified	Mouse	NOAEL Not available	20 days
Toluene	Inhalation	bone, teeth, nails, and/or hair	Not classified	Mouse	NOAEL 1.1 mg/l	8 weeks
Toluene	Inhalation	hematopoietic	Not classified	Human	NOAEL Not	occupational

		system vascular system			available	exposure
Toluene	Inhalation	gastrointestinal tract	Not classified	Multiple animal species	NOAEL 11.3 mg/l	15 weeks
Toluene	Ingestion	nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 625 mg/kg/day	13 weeks
Toluene	Ingestion	heart	Not classified	Rat	NOAEL 2,500 mg/kg/day	13 weeks
Toluene	Ingestion	liver kidney and/or bladder	Not classified	Multiple animal species	NOAEL 2,500 mg/kg/day	13 weeks
Toluene	Ingestion	hematopoietic system	Not classified	Mouse	NOAEL 600 mg/kg/day	14 days
Toluene	Ingestion	endocrine system	Not classified	Mouse	NOAEL 105 mg/kg/day	28 days
Toluene	Ingestion	immune system	Not classified	Mouse	NOAEL 105 mg/kg/day	4 weeks
P,P'-Methylenebis(phenyl isocyanate)	Inhalation	respiratory system	Causes damage to organs through prolonged or repeated exposure	Rat	LOAEL 0.004 mg/l	13 weeks

Aspiration Hazard

Name	Value
Toluene	Aspiration hazard
Hydrotreated Light Petroleum Distillates	Aspiration hazard

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labeling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Acute aquatic hazard:

GHS Acute 3: Harmful to aquatic life.

Chronic aquatic hazard:

GHS Chronic 3: Harmful to aquatic life with long lasting effects

No product test data available

Material	Cas #	Organism	Туре	Exposure	Test Endpoint	Test Result
Urethane	68130-40-5		Data not			
Polymer			available or			
			insufficient for			
			classification			
Carbon Black	1333-86-4		Data not			
			available or			
			insufficient for			
			classification			
Sulfonic Acids,	70775-94-9	Water flea	Estimated	48 hours	Effect	>100 mg/l

C10-18-	I	1	1		Concentration	
Alkane, Ph					50%	
Esters					3070	
Sulfonic Acids,	70775-94-9	Zebra Fish	Estimated	96 hours	T a4h a1	> 100 m s/l
,	1/0//3-94-9	Zebra Fish	Estimated	96 nours	Lethal	>100 mg/l
C10-18-					Concentration	
Alkane, Ph					50%	
Esters						
Sulfonic Acids,	70775-94-9	Green algae	Estimated	72 hours	Effect	>100 mg/l
C10-18-					Concentraion	
Alkane, Ph					0%	
Esters						
Kaolin,	92704-41-1	Green algae	Estimated	72 hours	Effect	2,500 mg/l
Calcined					Concentration	
					50%	
Kaolin,	92704-41-1	Water flea	Estimated	48 hours	Effect	>100 mg/l
Calcined	2701 11 1	Water fied	Estimated	To nours	Concentration	100 mg/1
Carcinea					50%	
Kaolin,	92704-41-1	Zebra Fish	Estimated	96 hours	Lethal	>100 mg/l
	92/04-41-1	Zedia Fish	Estimated	96 Hours	Concentration	100 mg/1
Calcined					1	
1	0.000				50%	
Kaolin,	92704-41-1	Green algae	Estimated	72 hours	Effect	41 mg/l
Calcined					Concentration	
					10%	
Kaolin,	92704-41-1	Rainbow Trout	Estimated	30 days	No obs Effect	>100 mg/l
Calcined					Conc	
Hydrotreated	64742-47-8	Green Algae	Estimated	72 hours	Effect	1 mg/l
Light					Concentration	
Petroleum					50%	
Distillates						
Hydrotreated	64742-47-8	Rainbow Trout	Estimated	96 hours	Lethal Level	2 mg/l
Light	0 17 12 17 0	Tamico W 110 av	2501114004) o 110 til b	50%	
Petroleum					3070	
Distillates						
Hydrotreated	64742-47-8	Water flea	Estimated	48 hours	Effect Level	1.4 mg/l
	04/42-4/-0	w ater frea	Estillated	46 110018	50%	1.4 mg/1
Light					30%	
Petroleum						
Distillates					27 1 7 22	
Hydrotreated	64742-47-8	Green Algae	Estimated	72 hours	No obs Effect	1 mg/l
Light					Level	
Petroleum						
Distillates						
Hydrotreated	64742-47-8	Water flea	Estimated	21 days	No obs Effect	0.48 mg/l
Light					Level	
Petroleum						
Distillates						
Toluene	108-88-3	Coho Salmon	Experimental	96 hours	Lethal	5.5 mg/l
10100110	100 00 5	Cono Sumion	Z.ip • i i i i i i i i i i i i i i i i i i) o no dro	Concentration	le te ting, t
					50%	
Toluene	108-88-3	Fish other	Experimental	96 hours	Lethal	6.41 mg/l
Toruche	100-00-3	1 1311 011101	Laperiniental) ilouis	Concentration	0.71 IIIg/1
TP 1	100.00.2	C 41	F	72.1	50%	10.5 //
Toluene	108-88-3	Green Algae	Experimental	72 hours	Effect	12.5 mg/l
					Concentration	
				1	50%	
Toluene	108-88-3	Water flea	Experimental	48 hours	Effect	3.78 mg/l

				Concentration	
100 00 2	C-11	F	40 1		2.2
108-88-3	Cono salmon	Experimental	40 days		3.2 mg/l
100.00.2	777 . 0	D	- I		0.54
108-88-3	Water flea	Experimental	7 days		0.74 mg/l
101 (0.0					
101-68-8	Green algae	Estimated	72 hours		>1,640 mg/l
				50%	
101-68-8	Water flea	Estimated	24 hours		>1,000 mg/l
				50%	
101-68-8	Zebra Fish	Estimated	96 hours		>1,000 mg/l
				50%	
101-68-8	Green algae	Estimated	72 hours	No obs Effect	1,640 mg/l
				Conc	
101-68-8	Water flea	Estimated	21 days	No obs Effect	10 mg/l
				Conc	
683-18-1	Algae	Experimental	96 hours	Effect	0.043 mg/l
	J	F			
				50%	
683-18-1	Water flea	Experimental	48 hours		0.84 mg/l
000 10 1	,, 4,00	Z.i.p • i i i i i i i i i i i i i i i i i i	. o nours		
683-18-1	Ricefish	Experimental	28 days		1.8 mg/l
1					
683-18-1	Water flea	Experimental	21 days		0.015 mg/l
002 10 1		Zpormionar			· · · · · · · · · · · · · · ·
	101-68-8	108-88-3 Water flea 101-68-8 Green algae 101-68-8 Water flea 101-68-8 Zebra Fish 101-68-8 Green algae 101-68-8 Water flea 683-18-1 Algae 683-18-1 Ricefish	Water flea Experimental 101-68-8 Green algae Estimated 101-68-8 Water flea Estimated 101-68-8 Zebra Fish Estimated 101-68-8 Green algae Estimated 101-68-8 Green algae Estimated 683-18-1 Algae Experimental 683-18-1 Water flea Experimental 683-18-1 Ricefish Experimental	Water flea Experimental 7 days Green algae Estimated 72 hours Water flea Estimated 24 hours University of the settimated 24 hours Estimated 96 hours Green algae Estimated 72 hours Estimated 96 hours University of the settimated 96 hours Estimated 72 hours Estimated 72 hours Algae Estimated 96 hours Estimated 96 hours Estimated 21 days Experimental 96 hours Experimental 96 hours Experimental 96 hours Experimental 48 hours Experimental 28 days	S0% S0%

12.2. Persistence and degradability

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
Urethane	68130-40-5	Data not			N/A	
Polymer		availbl-				
		insufficient				
Carbon Black	1333-86-4	Data not			N/A	
		availbl-				
		insufficient				
Sulfonic Acids,	70775-94-9	Experimental	28 days	Biological	49 % weight	
C10-18-		Biodegradation		Oxygen		
Alkane, Ph				Demand		
Esters						
Kaolin,	92704-41-1	Data not			N/A	
Calcined		availbl-				
		insufficient				
Hydrotreated	64742-47-8	Data not			N/A	
Light		availbl-				

3M™ Windo-Weld™ Super Fast Urethane, PN 08609

Petroleum Distillates		insufficient				
Toluene	108-88-3	Experimental Photolysis		Photolytic half- life (in air)	5.2 days (t 1/2)	Other methods
Toluene	108-88-3	Experimental Biodegradation	20 days	Biological Oxygen Demand	80 % weight	
P,P'- Methylenebis(p henyl isocyanate)	101-68-8	Estimated Hydrolysis		Hydrolytic half-life	20 hours (t 1/2)	Other methods
DIBUTYLTIN DICHLORIDE	683-18-1	Modeled Photolysis		Photolytic half- life (in air)	12.7 hours (t 1/2)	Other methods
DIBUTYLTIN DICHLORIDE	683-18-1	Experimental Biodegradation	28 days	Carbon dioxide evolution	5.5 % weight	OECD 301B - Mod. Sturm or CO2

12.3. Bioaccumulative potential

Material	CAS No.	Test Type	Duration	Study Type	Test Result	Protocol
Urethane Polymer	68130-40-5	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Carbon Black	1333-86-4	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Sulfonic Acids, C10-18- Alkane, Ph Esters	70775-94-9	Experimental BCF-Carp	36 days	Bioaccumulatio n Factor	212	
Kaolin, Calcined	92704-41-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Hydrotreated Light Petroleum Distillates	64742-47-8	Data not available or insufficient for classification	N/A	N/A	N/A	N/A
Toluene	108-88-3	Experimental Bioconcentrati on		Log of Octanol/H2O part. coeff	2.73	Other methods
P,P'- Methylenebis(p henyl isocyanate)	101-68-8	Experimental BCF-Carp	28 days	Bioaccumulatio n Factor	200	OECD 305E-Bioaccum Fl-thru fis
DIBUTYLTIN DICHLORIDE	683-18-1	Data not available or insufficient for classification	N/A	N/A	N/A	N/A

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available

SECTION 13: Disposal considerations

13.1. Disposal methods

According to the Environmental Quality (Scheduled Wastes) Regulations 2005, scheduled waste has to be sent to a prescribed premise for recycling, treatment or disposal. Please approach Kualiti Alam for proper schedule waste classification and disposal.

SECTION 14: Transport Information

Not hazardous for transportation.

Marine Transport (IMDG)

UN Number: None assigned.

Proper Shipping Name: None assigned.

Technical Name: None assigned.

Hazard Class/Division: None assigned.

Subsidiary Risk: None assigned. Packing Group: None assigned. Limited Quantity: None assigned. Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions:

None assigned.

Air Transport (IATA)

UN Number: None assigned.

Proper Shipping Name: None assigned.

Technical Name: None assigned.

Hazard Class/Division: None assigned.

Subsidiary Risk: None assigned. Packing Group: None assigned.

Limited Quantity: None assigned.

Marine Pollutant: None assigned.

Marine Pollutant Technical Name: None assigned.

Other Dangerous Goods Descriptions:

None assigned.

Transportation classifications are provided as a customer service. As for shipping, YOU remain responsible for complying with all applicable laws and regulations, including proper transportation classification and packaging. 3M's transportation classifications are based on product formulation, packaging, 3M policies and 3M's understanding of applicable current regulations. 3M does not guarantee the accuracy of this classification information. This information applies only to transportation classification and not the packaging, labeling or marking requirements. The above information is only for reference. If you are shipping by air or ocean, YOU are advised to check & meet applicable regulatory requirements.

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Global inventory status

Contact 3M for more information. The components of this material are in compliance with the provisions of the Korea Chemical Control Act. Certain restrictions may apply. Contact the selling division for additional information. The components of this product are in compliance with the chemical notification requirements of TSCA. This product complies with Measures on Environmental Management of New Chemical Substances. All ingredients are listed on or exempt from on China IECSC inventory.

SECTION 16: Other information

DISCLAIMER: The information on this Safety Data Sheet is based on our experience and is correct to the best of our knowledge at the date of publication, but we do not accept any liability for any loss, damage or injury resulting from its use (except as required by law). The information may not be valid for any use not referred to in this Data Sheet or use of the product in combination with other materials. For these reasons, it is important that customers carry out their own test to satisfy themselves as to the suitability of the product for their own intended applications.

3M Malaysia SDSs are available at www.3M.com.my